Prostate Boundary Detection from Ultrasound Images using Ant Colony Optimization

Download Full Text
Author(s):
Vikas Wasson, Baljit Singh
Published Date:
September 29, 2011
Issue:
Volume 1, Issue 1
Page(s):
39 - 48
DOI:
10.7815/ijorcs.11.2011.004
Views:
4542
Downloads:
497

Keywords:
prostate, boundary detection, ant colony optimization, cancer, sonograms
Citation:
Vikas Wasson, Baljit Singh, "Prostate Boundary Detection from Ultrasound Images using Ant Colony Optimization". International Journal of Research in Computer Science, 1 (1): pp. 39-48, September 2011. doi:10.7815/ijorcs.11.2011.004 Other Formats

Abstract

Prostate Cancer & diseases is quite common in elderly men. Early detection of prostate cancer is very essential for the success of treatment. In the diagnosis & treatment of prostate diseases, prostate boundary detection from sonography images plays a key role. However, because of the poor image quality of ultra sonograms, prostate boundary detection is still difficult & challenging task & no efficient & consistent solution has yet been found. For improving the efficiency, they need is to automate the boundary detection process for which number of methods has been proposed. In this paper, a new method based on Ant Colony Optimization is proposed, which will increase efficiency & minimize user involvement in prostate boundary detection from ultrasound images.

  1. Shao Fan, Ling KV. Prostate Boundary Detection from Ultrasonographic Images. J Ultrasound Med 22:605-623, 2003
  2. Aarnink RG, Beerlage HP, de la et al., TRUS of the prostate: innovations & future applications. J Urol 1998; 159:1568–1579. doi:10.1097/00005392-199805000-00045
  3. Lee F, Bahn DK, et al., The role of TRUS biopsies for determination of internal and external spread of prostate cancer. Semin Urol Oncol 1998; 16:129–136.
  4. Sakas G, Schreyer L, Grimm M. Pre-processing segmenting and volume rendering 3D ultrasonic data. IEEE Comput Graph Appl 1995; 15:47–54. doi:10.1109/38.391490
  5. Arambula-Cosio F, Davies BL. Automated prostate recognition: a key process for clinically effective robotic prostatectomy. Med Biol Eng Comput 1999; 37:236–243.
  6. Von Eschenbach A, Ho R, Murphy GP, Cunningham M, Lins N. American Cancer Society guideline for the early detection of prostate cancer: update 1997. CA Cancer J Clin 1997; 47:261–264. doi:10.3322/canjclin.47.5.261
  7. Joseph Awad, T.K. Abdel-Galil. Prostate Boundary detection in TRUS Images using Scanning Technique. CCGEI 2003, Montreal, May 2003 7781-7803-8/03. doi:10.1109/CCECE.2003.1226113
  8. Pathak S.D & V Chalana. University of Washington, Seattle WA. Edge Guided Delineation of the Prostate in TRUS Images. o-7803-5674-8/99, 1999 IEEE
  9. Richard WD, Keen CG. Automated texture-based segmentation of ultrasound images of the prostate. Computer Med Imaging Graph 1996; 20:131–140. doi:10.1016/0895-6111(96)00048-1
  10. Y. Zhan et al., Automated Segmentation of 3D US prostate Images using Statistical Texture- Based Matching Method, MICCAI 2003, LNCS 2878, 688-696, 2003
  11. Y. Zhan et al., Prostate Boundary detection in Transrectal Ultrasound Images, ICASSP 2005, 0-7803-8874-7/05, 2005 IEEE
  12. Dinggang Shen et al., Optimized Prostate biopsy via a statistical atlas of cancer spatial distribution. D Shen et al. / Medical Image Analysis 8 (2004) 139-150. doi:10.1016/j.media.2003.11.002
  13. Abolmaesumi P et al., Segmentation of Prostate Contours from Ultrasound Images, 0-7803-8484-9/04 2004 IEEE. doi:10.1109/ICASSP.2004.1326595
  14. Ladak HM et al., Prostate Segmentation from 2D Ultrasound Images. 0-7803-6455-1/00, 2000. doi:10.1109/IEMBS.2000.901572
  15. Narsis, Morteza, Computer-Aided Detection of Prostate Detection. CIMCA-IAWTIC 06, 0-7695-2731-0/06 2006 IEEE. doi:10.1109/CIMCA.2006.75
  16. Ruo Yun Wu, et al., Automatic Prostate Boundary Recognition in Sonographic Images using Feature Model & Genetic Algorithm, J Ultrasound Med 19:771-782, 2000. 0278-4297/00
  17. Tong S, Downey DB, Cardinal HN, Fenster A. A 3D ultrasound prostate imaging system. Ultrasound Med 1996; 22:735–746.
  18. William D. Richard et al., A method for 3D Prostate Imaging using Transrectal Ultrasound, Computerized Medical Imaging & graphics, Vol.17. No2, 73-79, 1993. doi:10.1016/0895-6111(93)90048-R
  19. Moskalik AP et al., 3D Registration of Ultrasound with Histology in the prostate. 0-7803-4153-8/97 1997 IEEE. doi:10.1109/ULTSYM.1997.661838
  20. Ahmed Jendoubi et al; Segmentation of Prostate Ultrasound Images using an Improved Snakes Technique. 0-7803-8406-7/04 2004 IEEE. doi:10.1109/ICOSP.2004.1442306
  21. Nohaida & Norlida, Comparative Study of GA & ACO algorithm Performances for Robot Path Planning in Global Static Environments.
  22. Guokuan Li et al; 3D Prostate Boundary Reconstruction from 2D TRUS Images 1-4244-1120-3/07 2007 IEEE. doi:10.1109/ICBBE.2007.244
  23. De-Sian Lu et al; Edge Detection Improvement by Ant Colony Optimization 0167-8655 doi:10.1016/j.patrec.2007.10.021

  • Bisso, Ignacio, and Juliana Gambini. "Ultrasound Image Segmentation through a Fast Active Contour Based Algorithm." VI Latin American Congress on Biomedical Engineering CLAIB 2014, Paraná, Argentina 29, 30 & 31 October 2014. Springer International Publishing, 2015.
  • Bisso, Ignacio, and Juliana Gambini. "Segmentación de imágenes de ultrasonido por medio de un algoritmo rápido de contornos activos." XVIII Congreso Argentino de Ciencias de la Computación. 2013.