
International Journal of Research in Computer Science
eISSN 2249-8265 Volume 2 Issue 3 (2012) pp. 1-6
© White Globe Publications
www.ijorcs.org

www.ijorcs.org

A COMPARISON OF COMPUTATION TECHNIQUES
FOR DNA SEQUENCE COMPARISON

Harshita G. Patil1, Manish Narnaware2

*M-Tech (CSE) G.H.Raisoni College of Engineering, Hingana Road, Nagpur, India
1Email: patil.harshita27@rediffmail.com,
2Email: manish.narnaware@yahoo.com

Abstract: This Project shows a comparison survey

done on DNA sequence comparison techniques. The
various techniques implemented are sequential
comparison, multithreading on a single computer and
multithreading using parallel processing. This Project
shows the issues involved in implementing a dynamic
programming algorithm for biological sequence
comparison on a general purpose parallel computing
platform Tiling is an important technique for
extraction of parallelism. Informally, tiling consists of
partitioning the iteration space into several chunks of
computation called tiles (blocks) such that sequential
traversal of the tiles covers the entire iteration space.
The idea behind tiling is to increase the granularity of
computation and decrease the amount of
communication incurred between processors. This
makes tiling more suitable for distributed memory
architectures where communication startup costs are
very high and hence frequent communication is
undesirable. Our work to develop sequence-
comparison mechanism and software supports the
identification of sequences of DNA.

Keywords: Dynamic Programming Algorithms,
FASTA, Sequences Alignment, Tiling.

I. INTRODUCTION

Comparing DNA sequences is one of the basic
tasks in computational biology. In bioinformatics, a
sequence alignment is a way of arranging the
sequences of DNA, RNA, or protein to identify
regions of similarity that may be a consequence of
functional, structural, or evolutionary relationships
between the sequences. Aligned sequences of
nucleotide or amino acid residues are typically
represented as rows within a matrix. Gaps are inserted
between the residues so that identical or similar
characters are aligned in successive columns.

DNA (deoxyribonucleic acid) is the chemical
material in a cell that carries the genetic codes for
living organisms. Its structure is a double helix
consisting of two sequences of letters from a four-
letter alphabet (A, T, C, G), such that A is paired with
T, and C with G. The letters represent the nucleotides

or bases known as adenine, thymine, cytosine and
guanine. Since the bases are paired, they are referred to
as base pairs. All the DNA of a living organism is
called its genome. The size of a genome can vary from
millions of base pairs for bacteria to several billions
base pairs in the case of mammals.

The nearly exponential growth rate of biological
sequence database threatens to overwhelm existing
computational methods for biological data analysis and
searching. The computational demand needed to
explore and analyze the data contained in these
databases is quickly becoming a great concern. To
meet these demands, we must use high performance
computing systems, such as parallel computers.
Biological sequences can be treated as strings over a
fixed alphabet of characters, a, c, t and g. An
alignment is a way of stacking one sequence above
the other and matching characters from the two
sequences that lie in the same position. From the
alignment, we can find two subsequences contained
respectively in two sequences that have the most
similarity. The problem of the biological sequence
alignment is the most faced in the exploring and
analyzing the data, no matter in sequence assembly,
comparison of homology, finding of gene coding
region and prediction of protein’s structure and
function.

In this paper we consider the parallelization of this
implementation, since parallelization of an iterative
implementation of the algorithm would not be feasible.
There has been significant recent work on the
parallelization of dynamic programming algorithms in
computational biology including implementations
suitable for computational grids. What distinguishes
this work is the data-driven recursive implementation,
with resulting dynamically allocated tasks. The rest of
this paper is organized as follows. In section 2, we
provide Needleman-Wunsch and Smith Waterman
algorithm. Section 3 provides parallel processing
techniques. The parallel computation technique using
multi-core architecture for DNA sequence comparison
is shown in section 4, and conclusions about the
completed work are discussed in section 5.

http://www.ijorcs.org/

2 Harshita G. Patil, Manish Narnaware

www.ijorcs.org

II. NEEDLEMAN-WUNSCH AND SMITH
WATERMAN ALGORITHM

There are several methods for alignment of two
biological sequences. The dynamic programming is
probably the most popular programming method in
sequences alignment. The Needleman-Wunsch
algorithm, the first algorithm applying the dynamic
programming to comparing biological sequences, was
proposed by Needleman and Wunsch in 1970. Later,
Smith and Waterman improved the Needleman-
Wunsch algorithm and proposed the well-known
Smith-Waterman algorithm. The time complexity of
these algorithms is O(mn), where m, n are the lengths
of the two sequences respectively. Because the cores
of these algorithms are dynamic programming, all
algorithms need to manipulate an (n+1) (m+1) matrix,
named dynamic programming matrix. The most time
spent in these algorithms is calculating the dynamic
programming matrix, so research work on
parallelization of two sequences alignment focuses
mostly on the calculation of the matrix. As the growth
of biological sequence database, the length of
sequences often becomes very long, and the size of the
matrix becomes very large. Thus, not only the
execution time of these algorithms needs to be very
long, the memory space needed in the algorithm
becomes very large. Even in some cases the size of the
matrix is bigger than the size of memory space in one
processor.

Two input sequence files are compared sequentially and
final score is computed.

A. Sequence comparison using similarity matrix

This consists of two parts: the calculation of the
total score indicating the similarity between the two
given sequences, and the identification of the
alignment(s) that lead to the score. In this paper we
will concentrate on the calculation of the score, since
this is the most computationally expensive part. The
idea behind using dynamic programming is to build up
the solution by using previous solutions for smaller
subsequences. The comparison of the two sequences X
and Y, using the dynamic programming mechanism, is
illustrated in Figure 2. This finds global alignments by
comparing entire sequences. The sequences are placed
along the left margin (X) and on the top (Y). A
similarity matrix is initialized with decreasing values
(0,-1,-2,-3,…) along the first row and first column to
penalize for consecutive gaps (insertions or deletions).

The other elements of the matrix are calculated by
finding the maximum value among the following three
values: the left element plus gap penalty, the upper-left
element plus the score of substituting the horizontal
symbol for the vertical symbol, and the upper element
plus the gap penalty.

Figure 2: Similarity Matrix

For the general case where X = x1,…, xi and Y =
y1,…, yj, for i = 1,.., n and j = 1,…,m, the similarity
matrix SM[n;m] is built by applying the following
recurrence equation, where gp is the gap penalty and ss
is the substitution score:

 (1)

 In our example, gp is -1, and ss is 1 if the
elements match and 0 otherwise. However, other
general values can be used instead. Following this
recurrence equation, the matrix is filled from top left to
bottom right with entry [i; j] requiring the entries [i, j -
1], [i – 1, j -1], and [i-1, j]. Notice that SM[i; j]
corresponds to the best score of the subsequences
x1,…, xi and y1,…, yj. Since global alignment takes

Input Sequence File1 Final Score

Input Sequence File2

Figure 1: Sequential Processing

Sequential
Processing

http://www.ijorcs.org/

A Comparison of Computation Techniques for DNA Sequence Comparison 3

www.ijorcs.org

into account the entire sequences, the final score will
always be found in the bottom right hand corner of the
matrix. In our example, the final score 4 gives us a
measure of how similar the two sequences is. Figure 2
shows the similarity matrix and the two possible
alignments (arrows going up and left).

III. PARALLEL COMPUTATION

A parallel version of the sequence comparison
algorithm using dynamic programming must handle
the data dependences presented by this method, yet it
should perform as many operations as possible
independently. This may present a serious challenge
for efficient parallel execution on current general
purpose parallel computers, i.e., MIMD (Multiple
Instruction stream, Multiple Data stream computers).

Input Sequence File1 Final Score

Input Sequence File2

Tile Size Time T1

Figure 3: Multi -Threading on Single Computer

Input is two sequence files and tile size. Two input
sequence files are compared. The final score is
computed using the concept of multithreading on a
single computer.

One solution to this problem is to divide the
similarity matrix into rectangular blocks, as shown in
Figure 4(a). In this example, the program would
compute block 1 first, followed by 2 and 5, etc. If each
block has q rows and r columns, then the computation
of a given block requires only the row segment
immediately above the block, the column segment to
its immediate left, and the element above and to the
left … a total of q +r +1 elements. For instance, if each
block has 4 rows and 4 columns, then each block has
to compute 16 maxima after receiving 9 input values.
The communication-to-computation ratio drops from
3:1 to 9:16, an 81% reduction!

Note that this blocking will decrease the maximum
achievable parallelism somewhat, by introducing some
sequential dependence in the code. However, given the
sizes of the current problems and the parallel machines
currently used, this potential loss will not be a limiting
factor.

The load-balancing problem can be addressed by
putting several rows of blocks (or “strips”) on the same
processor. Figure 4(b) illustrates this approach when
four processors are used. The first and fifth strips are
assigned to processor 1, the second and sixth strips are
assigned to processor 2 and so on. This helps to keep

all processors busy through most of the computation.
For example, processor 1 initially works with the first
strip, then simultaneously with the first and fifth strip,
then finally only with the fifth strip. The processor
utilization rises to 75%.

Figure 4: Partition of the similarity matrix

IV. PARALLEL COMPUTATION TECHNIQUE
USING MULTI-CORE ARCHITECTURE

 The input DNA sequences are collected in FASTA
format. The FASTA files are converted to sequential
sequence file using the convertor. The converted files
are then compared on the distributed environment to
compute the final score. This process is shown in
Figure 5.

Figure 5: Parallel Computation Technique for DNA
Sequence Comparison

A. FASTA format

In bioinformatics, FASTA format is a text-based
format for representing either nucleotide sequences or
peptide sequences, in which base pairs or amino acids
are represented using single-letter codes. The format
also allows for sequence names and comments to
precede the sequences. The format originates from the
FASTA software package.

Convertor

>Seq1

AGCTCC
CCTAAT
AGGGCT
TTTGCC

AGCTCC
CCTAAT
AGGGCT
TTTGCC

Parallel Sequence Comparison

Sequence file

Sequential sequence file

Final Score

 Output
Two Input Files

Multi-
Threading

on
Single

Computer

http://www.ijorcs.org/

4 Harshita G. Patil, Manish Narnaware

www.ijorcs.org

Example of a simple FASTA file

> seq1 This is the description of my first sequence.
AGTACGTAGTAGCTGCTGCTACGTGCGCTAGCT
AGTACGACGTAGATGCTAGCTGACTCGATGC
> seq2 This is a description of my second sequence.
CGATCGATCGTACGTCGACTGATCGTAGCTAC
GTCGTCATCGTCAGTTACTGCATGCTCG

B. Parallel Algorithm Models

Figure 6: Parallel processing using multi-core architecture

 Complete project will take the input as two
sequence file and tile size from the user and system
will calculate the final score by comparing sequences
of given file by using multiple machine connected in
network.

 Master-Slave Model: One or more processes
generate work and allocate it to worker processes
shown in Figure 7.

Figure 7: Distributed System used for comparison

 When user operates the application, the
application acts as master to perform the task of
sequence file comparison and other machines in which
the application is installed will act as slave- returns the
result of tile matrix requested by master. Any machine
connected in network can act as master or slave. The
interaction between master and slave is shown in
Figure 8.

Master Slave
1. Load Sequential
Sequence File
(Sequence X file)

2. Load next Sequential

Sequence File
(Sequence Y file)
3. Input file size i.e. tile
width and tile height.

4. Calculate the number
of tiles required to
calculate the final
score.

5. Calculate the number
of diagonal rows
required to calculate.

6. Read sequence X
data for tile(0,0) and
send request to slave 1.

 1. Calculate the matrix
of required tile in
different thread.

7. Repeat step 6 for n
number of slave and
wait for the tile
response.

 2. Return the file to the
master.

8. Accept tile response
from the slave.

9. Collect all tiles of
each diagonal row.

10. Repeat step 6 to 9
for next diagonal row.

Figure 8: Interaction between Master and Slave

C. Similarity Matrix

The similarity matrix used for sequential
comparison is used in this approach also for DNA
comparison but it is performed parallel on different
machines using tiling technique.

D. Tiling Technique

Tiling is an important technique for extraction of
parallelism. Informally, tiling consists of partitioning
the iteration space into several chunks of computation
called tiles (blocks) such that sequential traversal of
the tiles covers the entire iteration space. The idea
behind tiling is to increase the granularity of
computation and decrease the amount of
communication incurred between processors. This
makes tiling more suitable for distributed memory
architectures where communication startup costs are
very high and hence frequent communication is
undesirable.

 Tiling is a well-established technique to enhance
data locality or coarsen the grain of parallelism in loop
programs. The iteration space of the program is
covered with (usually congruent) tiles and the
enumeration of the iteration points is changed so as to
enumerate the tiles in the outer dimensions (i.e. loops)
and the points within each such tile in the inner
dimensions. The shape and size of the tiles is usually
chosen dependent on the dependence vectors to

 Input Sequence File1 Final Score

 Input Sequence File2
 Tile Size Time T2

Parallel

Processing
Using

Multi-core
Architecture

 *Master/Slave
Application

*Master/Slave
Application

*Master/Slave
Application

*Master/Slave
Application

*Master/Slave
Application

*Master/Slave
Application

Sequence
File

Tile
Request

Tile
Response

USER

http://www.ijorcs.org/

A Comparison of Computation Techniques for DNA Sequence Comparison 5

www.ijorcs.org

minimize communication startups and the volume of
the data communicated, especially in the context of
distributed-memory architectures. For shared-memory
systems, the number of startups and the volume are
less of a concern, as long as the transfer time of the
data between cores stays small compared to the
computation time for each tile.

The Sequential Sequence File will be arranged in
similarity matrix and the matrix will be divided into
tiles. One tile will be allocated to one machine for
computation. The computations will be done
diagonally. Number of tiles coming under one
diagonal line will be allocated to machine in network
depending upon the number of machines available in
the network. When computation of one diagonal row is
complete then only the computation for the next
diagonal line will start. In this way the complete
matrix will be filled and the last cell of the matrix is
the final score which will be equal to the size of
sequential sequence file in case of match and if final
score is half of the size we can say 50% of the DNA is
matched and if final score is negative it indicates
mismatch.

Figure 9: Tiling Technique

V. CONCLUSION

The aim of this study is to show the difference in
computation to communication ratio using three
different techniques. This study shows the
computational power of parallel computers to speed up
the process of comparing sequences. We looked at the
dynamic programming mechanism and presented a
multithreaded parallel implementation. The
implementation uses similarity matrix method but
takes advantage of the tiling technique under
multithreading model. The result of implementation of
parallel processing on a single machine is shown in
Figure 10 (a) and using parallel processing in multi-
core multithreading architecture is shown in Figure 10
(b) which shows computation performed per sec.

Figure10 (a): Computation on Single machine using Parallel

Processing

Figure 10 (b): Computation on distributed system using

mullti-core achitecture

VI. REFERENCES
Conferences

[1] Sudha Gunturu*, Xiaolin Li*, and Laurence Tianruo

Yang** “Load Scheduling Strategies for Parallel DNA
Sequencing Applications” 11th IEEE International
Conference on High Performance Computing and
Communications 2009.

[2] Armin Gr¨oßlinger “Some Experiments on Tiling Loop
Programs for Shared-Memory Multicore Architectures”
Dagstuhl Seminar Proceedings 07361 Programming
Models for Ubiquitous Parallelism 2008.

[3] Nasreddine Hireche, J.M. Pierre Langlois and Gabriela
Nicolescu Département de Génie Informatique, École
Polytechnique de Montréal ‘‘Survey of
Biological High Performance Computing: Algorithms,
Implementations and Outlook Research’’ IEEE
CCECE/CCGEI, Ottawa, May 2006.
doi:10.1109/CCECE.2006.277302

[4] Friman S´anchez, Esther Salam´ı, Alex Ramirez and
Mateo Valero HiPEAC European Network of Excellence
Universitat Polit`ecnica de Catalunya (UPC), Barcelona,
Spain “Parallel Processing in Biological Sequence
Comparison Using General Purpose Processors” 2005
IEEE. doi:10.1109/IISWC.2005.1526005

[5] Matteo Canella - Filippo Miglioli Universit`a di Ferrara
(Italy) Alessandro Bogliolo Universit`a di Urbino (Italy)
Enrico Petraglio - Eduardo Sanchez Ecole Polytechnique
F´ed´erale de Lausanne EPFL-LSL,Lausanne
(Switzerland)” Performing DNA Comparison on a Bio-
Inspired Tissue of FPGAs” Proceedings of the
International Parallel and Distributed Processing
Symposium (IPDPS’03) 2003 IEEE.
doi:10.1109/IPDPS.2003.1213358

B(0,0) B(0,1) B(0,m-1)

B(1,0) B(1,m-1)

B(m-1,m-1)

http://www.ijorcs.org/

6 Harshita G. Patil, Manish Narnaware

www.ijorcs.org

[6] N. F. Almeida Jr ,C. E. R. Alves, E. N. Caceres, S.
W.Song ”Comparison of Genomes using High-
Performance Parallel Computing” Proceedings of the
15th Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD’03) 2003 IEEE.
doi:10.1109/CAHPC.2003.1250332

[7] Fa Zhang, Xiang-Zhen Qiao and Zhi-Yong Liu Institute
of Computing Technology, Chinese Academy of
Sciences, Beijing 100080, National Natural Science
Foundation of China, Beijing, 100083”A Parallel Smith-
Waterman Algorithm Based on Divide and Conquer”
Proceedings of the Fifth International Conference on
Algorithms and Architectures for Parallel Processing

(ICA3PP.02) 2002 IEEE.
doi:10.1109/ICAPP.2002.1173568

[8] W.S Martins, J.B Del Cuvillo, F.J.Useche, K.B
Theobald, G.R.Gao Department of Electrical and
Computer Engineering University of Delaware, Newark
DE19716, USA” A Multithreaded Parallel
Implementation of a Dynamic Programming Algorithm
for Sequence Comparison” Pacific Symposium on
Biocomputing 6:311-322 (2001).

[9] Subhra Sundar Bandyopadhyay, Somnath Paul and Amit
Konar Electronics and Telecommunication Department
Jadavpur University, Kolkata, India “Improved
Algorithms for DNA Sequence Alignment and Revision
of Scoring.

How to cite

Harshita G. Patil, Manish Narnaware, "A Comparison of Computation Techniques for DNA Sequence
Comparison". International Journal of Research in Computer Science, 2 (3): pp. 1-6, April 2012.
doi:10.7815/ijorcs.23.2012.021

http://www.ijorcs.org/

